Paul Isaac Bernays fue un famoso matemático suizo que desarrolló una nueva disciplina de lógica matemática.
Intelectuales-Académicos

Paul Isaac Bernays fue un famoso matemático suizo que desarrolló una nueva disciplina de lógica matemática.

Paul Isaac Bernays fue un famoso matemático suizo que hizo contribuciones notables a la filosofía de las matemáticas y desarrolló una nueva disciplina de la lógica matemática. El principal de su trabajo fue la teoría de la prueba y la teoría de conjuntos axiomáticos. Nacido en Londres, creció en París y Berlín. Cuando era niño, mostró un gran interés en la música, así como en las lenguas y las matemáticas antiguas. En la universidad, se especializó en matemáticas y también estudió filosofía y física teórica como asignaturas adicionales. A los 24 años, recibió su doctorado en matemáticas de la Universidad de Berlín. También obtuvo su habilitación de la Universidad de Zúrich y se convirtió en un Privatdozent allí. Pronto, se unió a David Hilbert como su asistente de investigación en la investigación de los fundamentos de la aritmética. Finalmente, fue galardonado con el Venia Legendi en la Universidad de Gotinga, pero perdió el puesto durante la Segunda Guerra Mundial debido a su ascendencia judía. Finalmente se mudó a Suiza, donde enseñó en la Eidgen¨ossische Technische Hochschule, Z¨urich. Es mejor recordado por su trabajo conjunto de dos volúmenes "Grundlagen der Mathematik" (1934-39) con Hilbert, y su Axiomatic Set Theory, que se publicó en 1958.

Infancia y vida temprana

Paul Bernays nació el 17 de octubre de 1888 en Londres. Era hijo de Julius Bernays, un empresario suizo, y de Sarah Brecher. Tuvo una infancia feliz creciendo con un hermano menor y tres hermanas menores.

De 1895 a 1907 estudió en el K¨ollnisches Gymnasium. Demostró un gran interés en la música y se convirtió en un pianista inmensamente talentoso. Más tarde exploró su talento para componer música también.

También estudió en la Technische Hochschule Charlottenburg durante aproximadamente medio año. Durante su vida escolar, también disfrutó estudiando lenguas y matemáticas antiguas.

Después de la escuela, se unió a la Universidad de Berlín, donde estudió durante cuatro semestres principalmente con Issai Schtur, Landau, Frobenius y Schottky en matemáticas; Riehl, Stumpf y Cassirer en filosofía, y Max Planck en física.

Posteriormente, estudió en Gottingen durante seis semestres, especializándose en matemáticas y estudiando filosofía y física teórica como asignaturas adicionales. Asistió a conferencias sobre matemáticas principalmente por Hilbert, Landau, Weyl y Klein; sobre física de Voigt y Born, y sobre filosofía principalmente de Leonard Nelson.

Carrera

En 1912, Paul Bernays recibió su Ph.D. en matemáticas de la Universidad de Berlín. Su tesis doctoral sobre la teoría del número analítico de formas cuadráticas binarias se completó bajo Landau.

Más tarde ese año, obtuvo su Habilitación de la Universidad de Zurich para una disertación sobre análisis complejo y el teorema de Picard, completada bajo el profesor Zermelo.

Fue Privatdozent en la Universidad de Zúrich de 1912 a 1917. Durante este período, conoció a Georg P´olya, Einstein y Hermann Weyl.

En 1917, fue invitado por Hilbert para ayudarlo en su investigación de los fundamentos de la aritmética. El trabajo lo llevó de regreso a Gotinga y ayudó a Hilbert a preparar conferencias y notas.

Además, también dio conferencias sobre matemáticas en la Universidad de Gotinga, donde obtuvo el Venia Legendi en 1919.

1922 en adelante, se convirtió en profesor extraordinario sin mandato en Gotinga. También asistió a las conferencias de, entre otros, Emmy Noether, van der Waerden y Herglotz, prefiriendo aprender escuchando en lugar de leer.

En 1933, perdió el puesto de Venia Legendi en la Universidad de Gotinga debido a su ascendencia judía. Hilbert lo contrató en privado como su asistente durante seis meses. Más tarde, la familia se mudó a Suiza.

En 1934, y varias veces más tarde, trabajó en Eidgen¨ossische Technische Hochschule (ETH), Z¨urich en un puesto de profesor provisional. En 1935-36, dio conferencias sobre lógica matemática y teoría de conjuntos axiomáticos en el Instituto de Estudios Avanzados de Princeton.

En 1939, recibió el Venia Legendi en la ETH y en 1945, se convirtió en profesor extraordinario. Dio conferencias sobre campos de números algebraicos, teoría de conjuntos, funciones elípticas, construcciones geométricas, el concepto de número, elementos de análisis, lógica matemática, la introducción de la teoría de la prueba, la teoría de la red, la constitución del continuo.

También continuó asistiendo a conferencias y seminarios impartidos por colegas intelectuales y amigos como Michel Plancheret, Beno Eckmann, Eduard Stiefel y Heinz Hopf.

Se familiarizó con Ferdinand Gonseth y se dio cuenta de una similitud en el punto de vista con él. Por lo tanto, participó en varias de las conferencias de Gonseth y se unió al consejo editorial de "Dialectica".

Más tarde se convirtió en miembro de la Sociedad Internacional de Filosofía de la Ciencia, fundada por Pere S. Dockx. Se convirtió en su presidente durante dos años. Desde 1956 hasta 1965, fue invitado tres veces como profesor visitante en la Universidad de Pensilvania, Filadelfia.

Trabajos mayores

La asociación de Paul Bernays con Hilbert resultó en un trabajo de dos volúmenes, "Grundlagen der Mathematik" (1934–1939). El trabajo intentó construir las matemáticas a partir de la lógica simbólica y una prueba de ello ahora se conoce como la paradoja de Hilbert-Bernays.

En siete artículos publicados en el Journal of Symbolic Logic entre 1937 y 1954, se embarcó en la teoría de conjuntos axiomáticos cuyo fundamento fue establecido por John von Neumann en la década de 1920. La teoría de Bernays, con algunas modificaciones de Kurt Gödel más tarde, llegó a conocerse como la teoría de conjuntos de Von Neumann – Bernays – Gödel.

En 1956, revisó "Grundlagen der Geometrie" de Hilbert (1899) sobre los fundamentos de la geometría. Él creía que toda la estructura de las matemáticas podría combinarse como una sola entidad lógica.

La investigación de Bernays en teoría de prueba y teoría de conjuntos axiomáticos ayudó a producir una nueva disciplina de lógica matemática. Su teoría de conjuntos axiomática fue desarrollada por Kurt Gödel y actualmente es conocida como la teoría de conjuntos de Von Neumann-Bernays-Gödel.

Vida personal y legado

Paul Bernays era de la fe judía y ciudadano de Suiza. Permaneció soltero durante toda su vida y vivió en Zürich con su madre y dos hermanas solteras.

Por naturaleza, fue amable y benevolente, ayudando a varios autores con sus trabajos. Nunca juzgó a los demás y siempre trató de ver todo con positividad.

Incluso en sus 80 años, se mantuvo activo en la investigación. Murió de una afección cardíaca el 18 de septiembre de 1977, a la edad de 88 años, en Zurich, Suiza.

Hechos rápidos

Cumpleaños 17 de octubre de 1888

Nacionalidad Suizo

Murió a la edad de 88 años

Signo del sol: Libra

Nacido en: Londres

Famoso como Matemático